You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

434 lines
9.3 KiB
Go

package day25
import (
"fmt"
"log"
"math/rand"
"strings"
"gitea.paas.celticinfo.fr/oabrivard/aoc2023/utils"
)
type Graph map[string]map[string]bool
type Edge struct {
left string
right string
}
func buildGraph(lines []string) Graph {
graph := map[string]map[string]bool{}
for _, line := range lines {
parts := strings.Split(line, ":")
src := parts[0]
if _, found := graph[src]; !found {
graph[src] = map[string]bool{}
}
links := graph[src]
dests := strings.Fields(strings.TrimSpace(parts[1]))
for _, dst := range dests {
links[dst] = true
if _, found := graph[dst]; !found {
graph[dst] = map[string]bool{}
}
reverseLink := graph[dst]
reverseLink[src] = true
}
}
return graph
}
func printGraph(graph Graph) {
for k1, v1 := range graph {
fmt.Print(k1, ": ")
for k2 := range v1 {
fmt.Print(k2, " ")
}
fmt.Println("")
}
}
func countComponents(graph Graph) int {
visited := map[string]bool{}
count := 0
for node := range graph {
if !visited[node] {
count++
queue := utils.NewQueue[string]()
queue.Enqueue(node)
for queue.HasElement() {
curNode := queue.Dequeue()
visited[curNode] = true
for linkedNode := range graph[curNode] {
if !visited[linkedNode] {
queue.Enqueue(linkedNode)
}
}
}
}
}
return count
}
func buildVerticesLists(graph Graph) []map[string]bool {
visited := map[string]bool{}
result := []map[string]bool{}
currSubgraph := 0
for node := range graph {
if !visited[node] {
result = append(result, map[string]bool{})
result[currSubgraph][node] = true
queue := utils.NewQueue[string]()
queue.Enqueue(node)
for queue.HasElement() {
curNode := queue.Dequeue()
visited[curNode] = true
result[currSubgraph][curNode] = true
for linkedNode := range graph[curNode] {
if !visited[linkedNode] {
queue.Enqueue(linkedNode)
}
}
}
currSubgraph++
}
}
return result
}
func buildEdgeList(graph Graph) []Edge {
edges := map[Edge]bool{}
for node, connectedNodes := range graph {
for connectedNode := range connectedNodes {
_, found1 := edges[Edge{node, connectedNode}]
_, found2 := edges[Edge{connectedNode, node}]
if !found1 && !found2 {
edges[Edge{node, connectedNode}] = true
}
}
}
result := []Edge{}
for e := range edges {
result = append(result, e)
}
return result
}
func findEdgesToDelete(graph Graph, edges []Edge) (bool, *Edge, *Edge, *Edge) {
for i := 0; i < len(edges); i++ {
for j := i + 1; j < len(edges); j++ {
for k := j + 1; k < len(edges); k++ {
// Delete edges i, j and k from graph
delete(graph[edges[i].left], edges[i].right)
delete(graph[edges[i].right], edges[i].left)
delete(graph[edges[j].left], edges[j].right)
delete(graph[edges[j].right], edges[j].left)
delete(graph[edges[k].left], edges[k].right)
delete(graph[edges[k].right], edges[k].left)
// count components
count := countComponents(graph)
// restore Graph
graph[edges[i].left][edges[i].right] = true
graph[edges[i].right][edges[i].left] = true
graph[edges[j].left][edges[j].right] = true
graph[edges[j].right][edges[j].left] = true
graph[edges[k].left][edges[k].right] = true
graph[edges[k].right][edges[k].left] = true
if count == 2 {
return true, &edges[i], &edges[j], &edges[k]
}
}
}
}
return false, nil, nil, nil
}
// Too basic. This brute force approach does not work with a large graph
func Part1(lines []string) int {
graph := buildGraph(lines)
printGraph(graph)
edges := buildEdgeList(graph)
fmt.Println(edges)
success, edge1, edge2, edge3 := findEdgesToDelete(graph, edges)
if !success {
return 0
}
fmt.Println(*edge1)
fmt.Println(*edge2)
fmt.Println(*edge3)
delete(graph[edge1.left], edge1.right)
delete(graph[edge1.right], edge1.left)
delete(graph[edge2.left], edge2.right)
delete(graph[edge2.right], edge2.left)
delete(graph[edge3.left], edge3.right)
delete(graph[edge3.right], edge3.left)
result := buildVerticesLists(graph)
fmt.Println(result[0])
fmt.Println(result[1])
return len(result[0]) * len(result[1])
}
// Try to solve it using https://en.wikipedia.org/wiki/Karger%27s_algorithm
func randomStringKey[T any](dic map[string]T) string {
i := rand.Int() % len(dic)
for key := range dic {
i--
if i < 0 {
return key
}
}
return ""
}
func swapConverged(graph *Graph, target, converged, vertex string) {
connected := (*graph)[target]
val, found := connected[converged]
if !found {
log.Fatal("Should never happen")
}
delete(connected, converged)
connected[vertex] = val
}
func kargerMinCut(graph Graph) (*Graph, int) {
count := 0
for len(graph) > 2 {
// randomly select a vertex and one of its connected vertex (called 'converged') to be merged
vertex := randomStringKey(graph)
converged := randomStringKey(graph[vertex])
// Remove link between vertex and converged vertex
delete(graph[converged], vertex)
delete(graph[vertex], converged)
count++
// Merge converged vertex into vertex
for k, v := range graph[converged] {
graph[vertex][k] = v
}
// swap converged vertex with vertex in all adjacency list vertices that shared an edge with converged vertex
for k := range graph[converged] {
verticesToLink := graph[k]
verticesToLink[vertex] = true
delete(verticesToLink, converged)
//swapConverged(&graph, k, converged, vertex)
}
// remove converged vertex from graph (adjency list)
delete(graph, converged)
count = len(graph[vertex])
}
return &graph, count
}
func duplicateGraph(graph *Graph) *Graph {
result := Graph{}
for k1, v1 := range *graph {
result[k1] = map[string]bool{}
for k2, v2 := range v1 {
result[k1][k2] = v2
}
}
return &result
}
// buggy since the adjency list is implemented with a map of map. Shoud be a map of slices to work
func Part1WithKerger(lines []string) int {
srcGraph := buildGraph(lines)
printGraph(srcGraph)
edges := buildEdgeList(srcGraph)
fmt.Println(edges)
minCut := 0
var graphParts *Graph
for minCut != 3 {
graph := duplicateGraph(&srcGraph)
graphParts, minCut = kargerMinCut(*graph)
}
if len(*graphParts) != 2 {
log.Fatal("Should always be 2")
}
result := 1
for _, v := range *graphParts {
result *= len(v)
}
return result
}
type GraphHolder struct {
v, e int
edges []Edge
graph Graph
}
type Subset struct {
parent string
rank int
}
// see https://ondrej-kvasnovsky-2.gitbook.io/algorithms/finding/union-find-algorithms
// or https://jojozhuang.github.io/algorithm/algorithm-union-find/
func find(subsets map[string]*Subset, e string) string {
// find root and make root as parent of e
// (path compression)
if subsets[e].parent != e {
subsets[e].parent = find(subsets, subsets[e].parent)
}
return subsets[e].parent
}
func Union(subsets map[string]*Subset, x, y string) {
xroot := find(subsets, x)
yroot := find(subsets, y)
// Attach smaller rank tree under root of high
// rank tree (Union by Rank)
if subsets[xroot].rank < subsets[yroot].rank {
subsets[xroot].parent = yroot
} else {
if subsets[xroot].rank > subsets[yroot].rank {
subsets[yroot].parent = xroot
} else {
// If ranks are same, then make one as root and
// increment its rank by one
subsets[yroot].parent = xroot
subsets[xroot].rank++
}
}
}
// Adapted from https://www.geeksforgeeks.org/introduction-and-implementation-of-kargers-algorithm-for-minimum-cut/?ref=lbp
func kargerMinCutUF(graphHolder GraphHolder) (int, *map[string]*Subset) {
// Get data of given graph
V := graphHolder.v
E := graphHolder.e
edges := graphHolder.edges
// Allocate memory for creating V subsets.
subsets := map[string]*Subset{}
// Create V subsets with single elements
for k := range graphHolder.graph {
subsets[k] = &Subset{k, 0}
}
// Initially there are V vertices in
// contracted graph
vertices := V
// Keep contracting vertices until there are
// 2 vertices.
for vertices > 2 {
// Pick a random edge
i := rand.Int() % E
// Find vertices (or sets) of two corners
// of current edge
subset1 := find(subsets, edges[i].left)
subset2 := find(subsets, edges[i].right)
// If two corners belong to same subset,
// then no point considering this edge
if subset1 == subset2 {
continue
} else {
// Else contract the edge (or combine the
// corners of edge into one vertex)
vertices--
Union(subsets, subset1, subset2)
}
}
// Now we have two vertices (or subsets) left in
// the contracted graph, so count the edges between
// two components and return the count.
cutedges := 0
for i := 0; i < E; i++ {
subset1 := find(subsets, edges[i].left)
subset2 := find(subsets, edges[i].right)
if subset1 != subset2 {
cutedges++
}
}
return cutedges, &subsets
}
func Part1WithKergerUF(lines []string) int {
srcGraph := buildGraph(lines)
printGraph(srcGraph)
edges := buildEdgeList(srcGraph)
fmt.Println(edges)
gh := GraphHolder{len(srcGraph), len(edges), edges, srcGraph}
minCut := 1000000
for i := 0; i < 1000; i++ {
cut, subsets := kargerMinCutUF(gh)
if cut < minCut {
minCut = cut
}
if minCut == 3 {
counts := map[string]int{}
for _, v := range *subsets {
currCount, found := counts[v.parent]
if !found {
counts[v.parent] = 1
} else {
counts[v.parent] = currCount + 1
}
}
result := 1
for _, count := range counts {
result *= count
}
return result
}
}
return minCut
}